REAL-TIME ALGORITHM FOR GLOBALLY OPTIMAL IMPULSIVE CONTROL OF SPACECRAFT FORMATIONS

Adam W. Koenig and Simone D’Amico
Stanford’s Space Rendezvous Laboratory (SLAB)
slab.stanford.edu
Proposed formation flying missions require more efficient control algorithms for challenging scenarios

- Lifetimes are limited by propellant capacity
- Missions must operate in eccentric orbits with multiple perturbations
- Multiple attitude modes result in time-varying cost of a specified maneuver

Target Star

Line-of-Sight

Miniaturized Distributed Occulter/Telescope (mDOT) mission concept
Problem Statement

- Develop a solution methodology that provides globally optimal impulsive control inputs for fixed-time, fixed-end-condition control of linear time-varying systems
- Solution based on geometric relationships between reachable sets
- Resulting algorithm accommodates:
 - Multiple state definitions
 - Multiple perturbations in eccentric orbits
 - A wide range of time-varying cost functions

CubeSat Proximity Operations Demonstration (CPOD) Mission (Image: NASA)
Geometry of Problem: Cost of Control Input

Propellant cost of a maneuver is:
1) Linear in magnitude
2) Varies with direction

Cost of control input at any specified time must be norm-like:
1) Cost proportional to $||u||$
2) Sublevel sets are convex

Example cost function sublevel sets
Geometry of Problem: Reachable Sets

- Reachable set of states for a specified cost is convex
- A cost is optimal if the target state is on the boundary of the reachable set
Solution Approach

- Primal problem: minimize cost subject to constraint that target is reachable
 - Shape of reachable set not known in advance
- Dual problem: maximize cost subject to constraint that target cannot be reached at a lesser cost
 - Equivalent to maximizing the cost to reach a plane that contains the target state

Example supporting hyperplanes
Lower Bounds on Minimum Cost

- Each feasible solution to the dual problem is a lower bound on the minimum cost.
- Each choice of λ defines a supporting hyperplane that is tangent to the reachable set.
- Using multiple λ it is possible to compute an arbitrarily accurate polyhedral approximation of the reachable set.

Example circumscribing polyhedra
Solution Algorithm

1. Initial λ
2. Compute optimal λ for candidate times
3. Refine candidate times
4. Check if converged to within tolerance
 - Converged
 - Not Converged
5. Optimal control input extraction
Validation

- Solved 1000 reconfigurations based on mDOT with time-varying attitude constraints
- Solutions required to have total cost within 1% of global optimum
- Algorithm converged in 1-7 refinement iterations
- Algorithm was implemented on a Tyvak flatsat processor (800 MHz) with a run time of 3-10 seconds
Conclusions

- Developed algorithm that computes optimal impulsive maneuvers for fixed-time, fixed-end-condition control of linear time-varying systems
 - Accommodates multiple state definitions
 - Accommodates dynamics models for eccentric orbits including perturbations
 - Can capture effects of attitude constraints in cost function definition
 - Solutions have total cost within user-specified tolerance of global optimum
 - Globally convergent and insensitive to poor initializations
 - Runs in real-time on space-qualified processor
REAL-TIME ALGORITHM FOR GLOBALLY OPTIMAL IMPULSIVE CONTROL OF SPACECRAFT FORMATIONS

Adam W. Koenig and Simone D’Amico
Stanford’s Space Rendezvous Laboratory (SLAB)
slab.stanford.edu