Quantification of Model Form Uncertainties in Eigenvalues Computation

Adrien Bos, Charbel Farhat & Christian Soize

Farhat Research Lab, Stanford University

Wednesday 19th April, 2017
Outline

Generalized Eigenvalue Problem and Objectives

Stochastic Formulation for the GEVP

Application and Results

Conclusion
Compute the mode shapes and frequencies of a structure;
Mesh the structure and use Finite Element Analysis;
Stiffness and mass matrices $K \in \mathbb{M}_{N,N}$ and $M \in \mathbb{M}_{N,N}$;
The generalized EVP can be written as:
$$K u = \omega^2 M u,$$
where u is the mode shape and $f = \omega/(2\pi)$ is the frequency.
N is the number of degrees of freedom.
Modeling Uncertainties

- Parametric uncertainties (geometry, boundary conditions, materials properties, etc);

- Modeling uncertainties:
 - Some of the physic may not be present in our model;
 - Use of a simple model.
Modeling Uncertainties
Projection-Based Model Reduction

- Reduce the dimension of the solution to \(n << N \);
- Use a Reduce Order Basis (ROB) \(V \);
- Time domain problem:

\[
M\ddot{y} + Ky = f(t)
\]

\[
y(0) = y_0
\]

- Approximate equations:

\[
y \approx Vy_r,
\]

\[
V^TMV\ddot{y}_r + V^TKVy_r = f(t).
\]

- Reduced GEVP:

\[
K_ru_r = \omega_r^2M_ru_r,
\]

where, \(K_r = V^TKV \) and \(M_r = V^TMV \).
Outline

Generalized Eigenvalue Problem and Objectives

Stochastic Formulation for the GEVP

Application and Results

Conclusion
Randomization of V into a random matrix W:

- W must satisfy some properties:

$$W^T M W = I_n,$$

$$B^T W = I_{n_{CD}}.$$

- $W \in \mathbb{M}_{N,n}$ is constructed using the Maximum Entropy principle;

Stochastic Generalized EVP:

$$K_r u_r = \omega_r^2 M_r u_r,$$

where, $K_r = W^T K W$ and $M_r = W^T M W$.

W depends on some hyperparameters α calibrated using available data.

Stochastic Formulation for the GEVP
Summary of the Method

- Stochastic model \(W(\alpha) \Rightarrow \) uncertainties quantification.

- Monte-Carlo method: \(\mathbb{E}[W(\alpha)] \) and \(\text{Var}[W(\alpha)] \).
Outline

Generalized Eigenvalue Problem and Objectives

Stochastic Formulation for the GEVP

Application and Results

Conclusion
mAEWing1 Flying Wing

- Replica of X-56 type aircraft made of composite material;
- Experimental measurements made at the University of Minnesota.
Finite Element Model

- Number of elements: 1828;
- Number of degrees of freedom: 4146;
- Model form uncertainties:
 - homogenized representation of the composite material;
 - lack of accounting for damping.
Performance of the SROM

- Basis of size $n = 10$ and $n_{\text{modes}} = 7$.
- SROM encompass the experimental data.
- No data for the fifth and seventh mode.
Outline

Generalized Eigenvalue Problem and Objectives

Stochastic Formulation for the GEVP

Application and Results

Conclusion
Conclusions

- The results demonstrate the ability of the SROM for model form uncertainty quantification.

- This method can be used for non-linear dynamics problem.

- This method can be coupled with hyper-reduction for very fast computation.